
International Conference Graphicon 2006, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/ 

Modeling of Fuzzy Natural Phenomena with Particle System: A General 
Method for Interactive Visualization 

Vladimir Beliaev, Natalia Zaytseva 
Applied Mathematics Department,  

St. Petersburg State Polytechnical University, St. Petersburg, Russia 
{vladimir, nata}@d-inter.ru 

 

Abstract 
We present a general approach for rendering fuzzy objects 
modeled by a system of particles. At present time a lot of 
different techniques exist for rendering such objects. Often 
researchers who develop methods for modeling of complex fuzzy 
objects like smoke and clouds use there own methods for 
rendering these objects. This separate developing of rendering 
techniques has led the methods to loss of generality. We propose 
general approach based on using image-aligned sheet-buffer 
splatting method for objects visualization taking into account light 
scattering inside object volume. Such approach gives physically-
based general method for visualization of modeled objects and 
should lie in base of rendering tool, which takes as input the set of 
colored particles (the color defines optical material properties) 
and density distribution function which specifies the way of 
material distribution inside particle’s domain. So researchers do 
not need to develop rendering algorithm for visualization their 
results at the step of model developing, they can see results 
immediately after modeling.  
Keywords: Volume Rendering, Particle Systems, Image-Aligned 
Sheet-Buffer Volume Splatting, Light Scattering Models. 

1. INTRODUCTION 

Physically-based methods of modeling so-called volume (fuzzy) 
effects like smoke, fog and clouds often give result as a set of 
particles. Every particle specifies some portion of substance, and 
is defined by position in 3D space, has volume and density value, 
which defines how much material is distributed in particle’s 
domain. Optical properties of object’s material are specified by 
particle’s color and optical model, which is used for objects 
lighting. Thus natural object may consist of several materials; 
particles may have different colors inside one set. Note, that some 
modeling methods mean particle as a material point which has no 
volume, but only position. In this case size of particle’s domain 
can be set due to required visual effects.  
Volume rendering methods are very close to our needs, as they 
take sampled scalar field and reconstruct it. Every value of scalar 
field defines density material in that point of space. For simplicity 
of understanding we will call scalar value as particle (thus in the 
context these terms are equal). 
Volume rendering (VR) methods were developed for medical 
needs and as a result some of them use the benefit of objects 
stativity. Note, that objects which are modeled by particles are 
dynamic – every frame particles change their position in the 
space. VR methods are divided into the following groups: cell-
projection [14], texture-based [16], ray–casting [17], splatting [1] 
and shear-warp [15] method. Table 1 gives a brief comparison of 
these techniques. More detailed discussion you can find in [2]. 

 
Table 1: Comparison of general volume rendering algorithms. 

 Ray 
casing  

Splatting Shear-
Warp 

Cell 
Projection 

Texture
-based 

Processed 
scalar values 

All Required Required Required All 

Speed + ++ +++ + ++++ 

Quality ++++ ++++ ++ ++ ++ 

Irregular 
grids 

Yes Yes No Yes No 

Hardware 
acceleration 

No Yes Yes Yes Yes 

 
The most suitable method for rendering dynamic objects, 
presented by set of particles is splatting, because it gives the best 
quality-speed trade-off and it is the only method which considers 
every particle independently and as a result it can be used for 
dynamic particles as well as for static ones. Other VR methods 
process static 3D grids with particles in nodes (density grids). So 
the only way to use these methods for dynamic set of particles is 
to build an irregular density grid at every frame and render it. 
Evidently, they are inefficient in our case. 
Splatting is a popular algorithm for direct volume rendering; it 
was first proposed by Westover [1]. Splatting method reconstructs 
a continuous density function from the sampled scalar field (set of 
particles) using 3D reconstruction kernels. Reconstruction kernel 
is a radially symmetric function that distributes particle material 
inside particles’ volume. For volume rendering, the continuous 
function is mapped to the screen as a superposition of pre-
integrated 3D kernels, which are called 2D footprint or splat. 
In this paper we present unified approach for rendering set of 
physical particles. Our method is based on image-aligned sheet-
buffer splatting, which was presented by Mueller and Crawfis [3] 
to eliminate popping artifacts (incorrect illumination of several 
object parts) that appear due to changing of viewer’s position (see 
Section 3 for details). We propose to use image-aligned sheet-
buffer splatting for rendering different-colored particles inside 
one set without color popping artifact (it appears for penetrating 
particles with different colors). Also we use image-aligned sheet-
buffer splatting for modeling the process of light propagation 
inside object volume from some light source taking into account 
light scattering. Additionally we propose to use volume textures, 
which are supported by modern GPUs, to store pre-integrated 
segments of reconstruction kernel instead of using the set of 2D 
images. This increases quality because current hardware allows us 
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to interpolate between segments automatically (see Section 4 for 
details).  
The remainder of this paper is organized as follows: We first 
discuss related work in Section 2. We then briefly review the 
theory and main algorithm of splatting (Section 3), introduce 
color popping term in Section 4 and present image-aligned sheet-
buffer splatting as way of eliminating this affect in Section 5. 
Next, we present our volume texture approach for effective 
storing images of particles segments in Section 6. In Section 7 we 
introduce our method of light propagation inside object’s volume 
based on image-aligned sheet-buffer splatting and compare it the 
one based on classical splatting. Then we present results of 
rendering two objects. Finally, we conclude our work and outline 
future research directions Section 9. 

2. RELATED WORK 

2.1 Splatting  
Splatting-based methods of volume rendering were intensively 
developed during last years. 
First splatting was mentioned by Westover [1]. This method uses 
pre-integrated 2D splat for visualization every particle. Splat is a 
quad with 2D texture of pre-integrated 3D reconstruction kernel, 
and this quad is always perpendicular to viewing direction (in 
computer graphics it is also known as sprite). Correctness of such 
approach is based on the fact that reconstruction kernel is a 
radially symmetric function and it looks the same from every 
viewing position. So its image can be pre-calculated. 
The main disadvantage of this method for us is incorrect 
processing of penetrating particles with different colors. Mueller 
and Crawfis [3] proposed image-aligned sheet-buffer splatting 
method to eliminate popping artifacts, which occur in classical 
splatting when viewer changes his position relative to object. In 
this method 2D splats are firstly accumulated in sheet images. 
Then images are composited1 sequentially back-to-front with 
frame buffer giving the resulting image. Plane of sheet images is 
parallel to screen (in classical sheet-buffer method the plane is 
aligned with the grid face most parallel to the image plane - 3D 
density grid is often rectilinear due to scan nature of visualized 
data). We use image-aligned sheet-buffer splatting to solve the 
problem of visual artifacts, which appear when two dynamic 
particles with different colors penetrate each other (color popping 
artifact). 

2.2 Lighting model 
Max [4] showed that general lighting model for light propagation 
inside material should include emission, absorption and scattering 
of incoming light by elementary material particle. All volume 
rendering methods take into account only emission and absorption 
of light incoming from object’s background. This approach is 
correct when visualized object is opaque (material is solid). 
Emission and absorption is not enough for gaseous fuzzy objects 
we are talking about – light scattering is necessary. General 
approach to visualization of particles which simulate physical 
natural phenomena should take into account light scattering inside 
volume object. We consider volume objects that have no distinct 
surface, so we have no need to take into account light reflection 
from the surface. As a result our lighting model should include 

                                                                 
1 Compositing means the same as blending. 

such optical effects as: emission, absorption and scattering from 
some light source through the object volume. These optical 
models were described by Max [4] in detail. Whereas emission 
and absorption are realized by standard interactive volume 
rendering methods light scattering is more complex process. 
There are a lot of papers dedicated to light scattering inside object 
volume [6], [7], but proposed methods are far from being 
interactive. Different approximations are used to process 
scattering interactively.  
Scattering illumination models simulate the emission and 
absorption of light by a medium as well as scattering through the 
medium. Single scattering models simulate scattering through the 
medium in a single direction. This direction is usually the 
direction leading to the point of view. Multiple scattering models 
are more physically accurate, but must account for scattering in 
all directions (or a sampling of all directions), and therefore are 
much more complicated and expensive to evaluate. 
Approximation which takes into account only single scattering 
was used by Voss [9] and Nishita et al. [10]. Such approach 
results in too dark part of cloud which is opposite to light source 
(Figure 1). The reason is necessity to model multiple scattering 
for such objects as clouds. 
Nishita et al. [11] showed that scattering of first and second order 
is sufficient. Dobashi et al. [5] developed two-pass method for 
single scattering. And Harris [8] generalized these ideas and used 
splatting for real-time modeling of light multiple scattering inside 
cloud. He used (classical) splatting for both passes: light 
propagation calculations and rendering particles with new light 
values. 
Nulkar and Mueller [12] proposed to use image-aligned sheet-
buffer splatting for generating shadows from volume object. Also 
they proved that image-aligned sheet-buffer splatting has the 
quality comparable with ray casting method (see Table 1). 
Our idea consists in using image-aligned sheet-buffer splatting to 
model the process of light scattering from light source through the 
fuzzy object volume. Our goal is to improve quality and make 
speed-up of existing algorithm for light propagation through the 
set of particles. 

 
Figure 1: Taking into account only single scattering of light 
inside cloud leads to abnormal dark parts on the opposite side 

from the light source [4]. 

3. SPLATTING: THEORY AND ALGORITHM 
All volume rendering algorithms evaluate the so-called volume 
rendering integral (VRI). We use notation and description from 
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[13]. Denote a point in ray space by a column vector of three 

coordinates ( )0 1 2, , Tx x x=x . Given a center of projection and a 
projection plane, these three coordinates are interpreted 
geometrically as follows: The coordinates 0x  and 1x  specify a 
point on the projection plane. The ray intersecting the center of 
projection and the point 0 1( , )x x  on the projection plane is called 

a viewing ray. Using the abbreviation $ 0 1( , )Tx x=x , we refer to 

the viewing ray passing through 0 1( , )x x  as $x . The third 

coordinate 2x  specifies the Euclidean distance from the center of 
projection to a point on the viewing ray. The following notations 

are equal: x , $ 2( , )Txx , or ( )0 1 2, , Tx x x  to denote a point in ray 
space. 

VRI describes the light intensity $( )I xλ  at wavelength λ  that 

reaches the center of projection along the ray $x  with length L  
(Figure 2): 

 
Figure 2: Volume rendering. Left: Illustrating the volume 

rendering equation in 2D. Right: Approximations in typical 
splatting algorithms. 

VRI looks as follows:  

 $ $ $ $
0 0

( ) ( , ) ( , ) exp( ( , ) )
L

I c d d
ξ

λ λ ξ τ ξ τ μ μ ξ= −∫ ∫x x x x , (1) 

where ( )τ x  is the extinction function that defines the rate of light 

occlusion at point, and ( )cλ x  is an emission coefficient, which 
defines quantity of light emitted by material in the point. VRI in 
discreet form looks as follows: 

 $ $ $ $
1

0

( ) ( ) ( ) (1 ( ))
k

k k q j j
k j

I c q qλ λ τ τ
−

=

= −∑ ∏x x x x , (2) 

where ˆ( )kq x  denotes 2 2ˆ ˆ( ) ( , )k kq r x dx=x x , where ( )kr x  is 
reconstruction kernel for particle’s material. In theory 
reconstruction kernel should have infinite definition domain and 
spreads particle’s material portion all over the space. But 
practically kernel function has finite definition area (local 
support) – it is truncated at some distance from its centre (when 
function value became lower than some threshold value). Locality 
of support is needed for one of simplifications, which reduce VRI 
(1) to discrete form (2). 
More detailed description of VRI and its discreet version you can 
find in [4]. 
Note, that VRI takes into account emission and absorption 
lighting models. It means that every material elementary particle 
may absorb some portion of incoming light and emit some 
additional light (e.g. hot gases shine). But VRI doesn’t take into 

account light scattering, which is very important for physically-
based visualization of fuzzy objects. For example, the main 
lighting effect, which makes cloud visible for us, is sun light 
scattering inside cloud volume. This problem is examined in 
Section 7. 

4. CLASSICAL SPLATTING: COLOR POPPING 
EFFECT 

In classical splatting method all particles are sorted by distance to 
the viewer and then their splats are projected to the image plane 
and composited with frame buffer in back-to-front order (relative 
to viewer). 
Consider situation when two particles with different colors are 
very close (see Figure 3). Splats are blended according to the 
following equation:  

 (1 )new frame bufferC C Cα α−= ⋅ + ⋅ − , (3) 

where C  is the particle color, α  is the particle’s density – 
material quantity in particle’s volume. 
 

 
Figure 3: Sprites of two close particles turn due to viewer 

position (top view). That leads to changing of particle 
compositing order. 

 
On Figure 3 two penetrate particles are shown schematically – 
only sprites are drawn in top view. Particles are static, but viewer 
moves. This movement changes order of splats composition with 
image in frame buffer. In the case of Figure 3a) they are projected 
and composited in order: 2, 1. But in case, illustrated on Figure 
3c) they are composited in order: 1, 2. The following equation 
shows the difference in resulting color in frame buffer after this 
splats as been blended:  

 
) 1 1 2 2 1 1 1 2 2 2 1 2

) 2 2 1 1 2 2 2 1 1 1 1 2

) ) 1 2 1 2

(1 )

(1 )

( )

a

c

a c

C C C C C C

C C C C C C

C C C C

α α α α α α α

α α α α α α α

α α

= + − = + −

= + − = + −

− = −

, (4) 

where ) )a cC C−  is the difference in resulting colors in the image. 
Figure 3b) shows the case when the distances from two particles 
to viewer are equal. The resulting order after sorting these 
particles by distance to viewer may randomly vary from frame to 
frame. This leads to the effect, which we call color popping effect. 

5. ELIMINATING COLOR POPPING 
To eliminate color popping effect described in previous section 
we use image-aligned sheet-buffer splatting. This method was 
developed to avoid popping artifacts, which appears in common 
sheet-buffer splatting.  
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In the sheet-buffer method, splats are added within sheets that are 
aligned parallel to the grid face most parallel to the image plane. 
After a sheet buffer has been accumulated, it is composited into a 
cache image that traverses the volume in back-to-front order [3]. 
Popping artifact occurs when the orientation of the compositing 
sheets changes suddenly as the image screen becomes more 
parallel to another volume face. 
In image-aligned sheet-buffer splatting sheet images are aligned 
parallel to the image plane (Figure 4), so popping artifact from the 
previous example doesn’t appear. But from the other side image-
aligned slices cut every particle on set of segments (Figure 1a), so 
instead of storing texture with 2D splat we should store the set of 
textures with pre-integrated particle segments. Disadvantage of 
this particle representation is essentially increase of memory 
usage and speed decrease, but advantage is avoiding of color 
popping effect. 

 
Figure 4: Image-aligned sheet-buffer splatting. 

 
Why does it help to avoid our color popping artifact? Solution lies 
in principles of this method. All particles’ segments which lie 
inside one volume slice are added (not composited) into sheet-
buffer. Addition is commutative operation and doesn’t depend on 
arguments order. 

6. VOLUME TEXTURE FOR IMAGES OF PRE-
INTEGRATED SEGMENTS 

As it was mentioned in previous section image-aligned sheet-
buffer method requires particles representation as a set of 
segments (Figure 5a), thus every volume slice cuts particles on 
parts. Mueller and Crawfis [3] store pre-integrated splats of 
segments in a set of 2D textures (128 segments) and then use the 
closest texture to the needed one. We propose to use volume 
texture to store images of pre-integrated segments. Unlike method 
of Mueler and Crawfis our approach allows to obtain not the 
closest image but required image of segment via interpolation 
between existed images. Access to the needed segment’s image is 
done by texture w-coordinate. We declare that this method 
increases resulting image quality. 
Additional advantage of using volume texture is solving batching 
problem, which exists in method of Mueller and Crawfis. Problem 
consists in high cost of texture setup. So it is more efficient to use 
one (volume) texture instead of set of 2D textures. 

 
Figure 5: a) every slice cuts particles into set of segments. b) we 
pre-integrate segments and store their images in volume texture. 

7. LIGHT SCATTERING  

We propose to use image-aligned sheet-buffer splatting for 
modeling of light scattering from light source through the object 
volume. Note, that Harris [8] used classical splatting for light 
propagation calculations; Nulkar and Mueller [12] used image-
aligned sheet-buffer splatting to render shadow from volume 
object. We generalize these ideas and declare that for our problem 
using image-aligned sheet-buffer splatting is more efficient in 
comparison with using classical splatting. Examine algorithms for 
light scattering calculations based on: classical splatting (Figure 
6-left), image-aligned sheet-buffer splatting (Figure 6-right). 
Light propagation process looks as light front moving through the 
object volume. Splatting-based methods model that movement: in 
classical splatting front moves from particle to particle, in image-
aligned sheet-buffer splatting front moves from slice to slice. 
The main idea of two-pass method is: pre-computing cloud 
shading in the first pass, and using this shading to render the 
clouds in the second pass.  
Calculation of cloud shading means computing for every particle 
the portion of light, which reaches it from the light source. Every 
particle absorbs some portion of incoming light and scatters 
residual light further. Scattering manner is a material property and 
is defined by a ( , ')PhaseFunction ω ω . 

Notation: L  is the light direction (from source to particle), ω  is 
the direction from particle to the viewer. Phase function 

( , ')PhaseFunction ω ω determines portion of light coming from 
direction 'ω  and scattering along direction ω .  

We use the same Raleigh phase function as Harris [8]:  

 2( , ') 3 / 4(1 )PhaseFunction xω ω = + , (5) 

where �cos( , ')x ω ω= . This phase function gives the most 
scattering in forward and backward directions, such scattering 
manner is characteristic for clouds. But we should note, that our 
algorithm (as well as two-pass methods of Harris and Dobashi et 
al.) takes into account only forward multiple scattering, due the 
way of shading the cloud in first pass – light front moves away 
from light source. Backward multiple scattering is very complex 
process. We include developing of approximation method for 
modeling backward scattering in our future work directions.  
In addition to phase function optical properties of the medium are 
characterized by albedo. We denote it as albedo  in algorithms 
and in experiments we use 9.0=albedo  as it was in [8]. 
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Figure 6: Two-pass rendering of particles set. Colored lines illustrate front movement through the volume. Left: method based on classical 

splatting, front moves from particles to particle. Right: method based on image-aligned sheet-buffer splatting, front moves from slice to 
slice. 

 
In algorithms presented below extinction coefficient is calculated 
as ατ −= 0.1)(x , where α  is the particles’ density value. 

7.1 Classical Splatting  
2D footprint of reconstruction kernel in calculated while 
preprocessing. 
Every Frame  
I Pass 
1. Set camera to light source position 
2. Sort particles relative to distance from 
   light source  
3. Clear frame buffer with color of light source 

4. For every particle , 1,kP k n=  (front-to- 
   back order) 

5.    Calculate projection center kP  onto 
      the screen  

6.    Calculate color of the pixel _frame bufferC  

      in frame buffer 
7.    Store particle color  

      _. . * .k k frame buffer kP C P C C albedo P τ= ∗ ∗  

8.    Light portion, scattered forward 

      ( , )k PhaseFunction L L= −  

9.    Render kP  with color .kP C k∗  through 
      compositing with frame buffer  
10.Endfor 
 
II Pass  
1. Set camera to viewer position 
2. Sort particles due to distance from viewer 

3. For every particle , 1,kP k n=  (back-to-front 
   order) 
4.    Portion of light, scattered to viewer 

      ( , )k PhaseFunction Lω=  

5.    Render kP  with color .kP C k∗  through 
      compositing with frame buffer  
6. Endfor 
EndFrame 

 

 

7.2 Image-Aligned Sheet-Buffer Splatting 
Preprocessing  
1. Calculate 2D images of pre-integrated segments 
and store them in 
   volume texture 

2. For every segment calculate weight Weight[ iS ] 
   (portion on particle’s material, which is 
    contained in segment volume) 
 
Every Frame 
I Pass 
1. Set camera to light source position 
2. Clear frame buffer with color of light source 
3. Build lists of segments for all slices  
4. For every slice (front-to-back order) 

5.    For every segment iS  of the slice 
6.      Build sprite with corresponding segment 
        footprint 

7.      Calculate projection center iS  onto the 
        screen 

8.      Calculate color of the pixel _frame bufferC in  

        frame buffer 
9.      Store particle color 

        _. . * .k k frame buffer kP C P C C albedo P τ= ∗ ∗  

10.     Add segment’s color with weight to 

        particle color . [ ]
ik new S iP C C Weight S+ = ∗  

11.     Light portion, scattered forward 

        ( , )k PhaseFunction L L= −  

12.     Render iS  with color iS k∗  through adding  
        with image current slice 
13.   Endfor 
14.   Composite slice’s image with contents of 
      frame buffer 
15. Endfor 
 
II Pass  
1. Set camera to viewer position 
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2. Build lists of segments for all slices  
3. For ever slice (back-to-front order) 

4.    For every segment iS  of the slice 
5.       Build sprite with corresponding segment 
         footprint 
6.       Light portion, scattered to the viewer 

         ( , )k PhaseFunction Lω=  

7.       Render iS  with color . .i kS P C k∗  through 

         adding to image current slice 
8.    Endfor 
9.    Composite slice’s image with contents of 
      frame buffer  
10.Endfor 
EndFrame 
 

Method, which models light scattering process using classical 
splatting, is slower because we have to read contents of frame 
buffer for every particle and this operation is very expensive. 
While method based on image-aligned sheet buffer splatting reads 
contents of frame buffer for every slice. Number of slices depends 
on viewer position and particles location (Figure 7).  

 
Figure 7: Number of slices in sheet-buffer splatting depends on 

particles location relative to viewer. a) only two slices are needed. 
b) eight slices are required. 

8. RESULTS 

For our experiments we use Intel Pentium 4 platform, 2,4ГГц 
CPU, 512 M RAM, ATI Radeon 9700 Pro.  
All algorithms were implemented using software, because our 
goal was verification of methods not optimized implementation.  
For particles we use Gaussian reconstruction kernel, which was 
proposed in [3]:  

 
22( ) 0.446 rG r e−= ⋅  (6) 

where 2 2 2r x y z= + + . 

Figure 3 demonstrates two penetrating each other particles with 
different colors (red and green). We use slices of 2/Rwidth = , 
where R  - radius of particle’s sphere (volume), so every particle 
is divided into the 4 segment. Figure 8 (left, center) shows result 
of rendering these particles with classical splatting, while Figure 8 
(right) demonstrates result of image-aligned sheet-buffer splatting 
application. We see that application of our method allows us to 
avoid color popping effect. We should note that result images are 
not very demonstrative because color popping occurs in dynamic 
scenes while static images don’t give good presentation of 
motion. 
Table 2 contains time, required for rendering these two particles.  

Table 2: Result of rendering two particles by different methods. 

Classical Splatting, ms (fps) 3.11 (321) 

Image-Aligned Sheet-Buffer Splatting, ms 
(fps) 

43.10 (23) 

 
Speed is the cost we pay for eliminating visual artifacts, but 
benefit is the physically-based general approach of our method. 
 
Figure 9 shows results rendering cloud-like objects. It consists of 
500 particles and is lit by directional light source. Cloud model is 
very robust and doesn’t’ pretend on natural look. It was created to 
verify shading method (e.g., test halo effect in case when light 
source and viewer are positioned at the opposite sides from the 
cloud) and to measure its speed in comparison with shading 
method proposed by Harris (note that we use our implementation 
of Harris’ method). Table 3 gives time of rendering. 

Table 3: Result of rendering cloud with lights scattering 
modeling. 

Lighting by directional light source On off 

Classical splatting used for both 
phases, ms (fps) 

3003 
(0.3) 

2.83 
(353) 

Image-aligned sheet-buffer splatting 
for both phases, ms (fps) 

286 
(3.5) 

58.1 
(17.2) 

9. CONCLUSION AND FUTURE WORK 
We have proposed a general approach for rendering volume 
objects which are modeled with a particle set. Our method 
includes usage of image-aligned sheet-splatting for visualization 
of particles with different colors. Also we develop method which 
models light propagation inside object volume taking into account 
light scattering, which is very significant lighting effect for 
visualization of “physical” fuzzy objects. Moreover, our method 
for scattering is more efficient for light scattering in comparison 
with the method based on classical splatting because our method 
is than 10 times faster than the method, presented by Harris. To 
prevent reader from being confused while comparison our results 
with Harris’ ones, we should make a note. Harris obtained the 
following results: “shading phase for scenes with only a few 
thousand particles takes less than a second per light source” – 
unfortunately these results are given very approximately. We 
shaded 500 particles for using classical splatting about 3 seconds 
with implementation that is not optimal. So we think our time 
results are adequate. We note, that our goal consisted in 
verification of method based on imaged-aligned sheet-buffer 
splatting for eliminating color popping artifacts for particles with 
different colors (e.g., cloud has different-shaded particles that 
may penetrate leading to color popping) and for shading particles 
in physically-based manner (image–aligned sheet-buffer method 
approximates light propagation process better than the classical 
splatting). We made a justification of using image-aligned sheet-
buffer splatting for shading phase instead of using classical 
splatting. Time results shows that our method is interactive and 
suitable for interactive visualization. 
 
Algorithms implementation was made without using of GPU 
possibilities. We plan to optimize these methods using hardware 
accelerators to relieve CPU for other needs, e. g. simulations. In 
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fact, most of specified calculations may be processed in vertex 
shader, e.g., phase function, computation of required segment 
image. This will allow us to speed up our method in cases when 
CPU is heavily used for other (not rendering) needs. 
 Also we plan to compare different reconstruction kernels in 
respect to image quality and possible visual effects. We want to 
examine triangles and quads as sprite primitives with a view of 
rendering speed. Also we are interested in developing method 
which takes into account not only forward scattering of light 
inside volume, but also backward scattering. 
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Figure 8: Two particles viewed from two positions, angle between viewing directions differs on 0,020. Left and center images were 

generated by classical splatting. Right image shows result of image-aligned sheet-buffer splatting (images for two viewing directions are 
accurate within color component value capacity). 

 

     
Figure 9: Left image shows cloud rendered taking into account light scattering, light source locates behind the cloud – cloud has brighter 

halo, which is typical for that light source position [8]. Center image shows cloud rendered taking into account light scattering, light 
source is located from the front of the cloud. Right image is result of rendering the cloud without light scattering. 


