
Multiple Views of a Virtual World Integrated with Real Images
M. J. Abásolo, F. J. Perales

Computer Graphics and Vision Group. Department of Mathematics and Computer Science
Balearic Islands University (UIB), Spain

Abstract
We propose a method for creating a virtual world that
integrates synthetic objects with images captured with a
camera. A virtual camera is defined to produce different
views of the 3D synthetic objects integrated with the real
image. The system includes image capturing, 3D scene
creation composed with the real images, and finally the
coherent integration between them. Particularly we use
the graphic library of Open Inventor*, but the system
could be implemented with any computer graphic tool
such as VRML, Java 3D, etc.

Keywords: Real images, 3-D Modelling, Synthetic
images, 3D-Scene, Camera views, Virtual world

1. INTRODUCTION

In video production, virtual studios provide compositing
of live video with synthetic or natural imagery. [1,2,3,4]
present virtual studio systems, some of them of
commercial usage for broadcasting. Real-time integration
is done but both a complete process of camera calibration
and sophisticated hardware, such as a tracking systems
that allows to know the accurate state of the camera
anytime, are needed. A virtual studio system divide into
three main subsystems: foreground tracking, background
rendering and compositing of the final image.

The goal of image integration is to create a scene in
which appears that the synthetic objects occupy a
particular place in the real scene. Also may be done only
for artistic effect with no concern for realism, but this is
not our case. Virtual shooting [2] provides a different
kind of camerawork from that with an actual camera. It
creates the impression of different camera work in an
image already shot. First a scene is filmed (tracking),
then it is processed (rendering) and later it is composited
with computer graphic material to form the final image.
In contrast, in our method a scene is filmed, then the
filmed video is mapped onto a flat surface defined in
computer graphic 3D space, and rendered together with
the synthetic objects. However our method is similar to
virtual shooting in the sense that produce different views
of the scene from that with the real camera providing a
virtual camera that makes zoom-in, zoom-out, and other
movements such as pan, tilt, roll or displacements.

A simple method for creating a 3-D scene, which
contains both synthetic objects and images that were
captured with a camera, is used with no need of
additional hardware more than a camera. The initial
system that we propose for integrating real and synthetic
objects doesn’t want to be a professional tool for video
producing. A possible use can be the construction of a 3D
                                                       
* Silicon Graphics

ambient with the added realism of a real scene as a
backstage, for example in a multimedia application.

Section 2 describes the designed system and every step of
the manual or semiautomatic process. Section 3 presents
some results of the system that includes the generation of
different views of the integrated 3D scene and the
animation of the synthetic objects.

2. INTEGRATION SYSTEM

Figure 1 shows a scheme of the integration process that
modifies the steps presented in [5] to include several
cameras. Basically it consists of:

1. Capture a sequence of images of the real scene with
one or more cameras.

2. Measure calibration parameters of the real scene and
the captured images to finally determine the position
and orientation of the real cameras.

3. Create 3D synthetic scene by using graphic libraries
such as Open Inventor, VRML, Java 3D.

4. For every camera, create a 3D “screen” object in the
synthetic scene for mapping the captured images
onto.

5. Create a virtual camera with Open Inventor to
visualise the 3-D complete scene correctly
integrated.

FIGURE 1. Scheme of the process

2.1. Capturing images

In our experiments, two cameras (Jai1510) connected to a
PC by a Matrox Meteor RGB card, capture a sequence of
images from a real scene. The software used for the video
capturing is Inspector 2.1 . The technical aspects are not
discussed here because are irrelevant in this description.
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We use a domestic system to facilitate the production of
general applications, such as multimedia projects,
videoconferences, etc.

From the capturing process an AVI format video is
obtained. It is decomposed in separate images files in an
Open Inventor compatible format.

2.2. Measuring parameters

To integrate a 3-D scene and a sequence of images
captured with a camera from a real scene, a reference in
the real scene is needed. The main goal is to deduce the
real camera original position and orientation relative to
this coordinate system. Given a set of points for which
the real world coordinates (x,y,z) are known, and the
corresponding points in image coordinates (u,v), it is
possible to derive camera position and orientation. A
popular model for this purpose is Tsai´s camera model
[6]. Generally an optimised solution requires at least 11
points, though if the real-world points are coplanar, as
few as 5 points suffice.

The reference point's real world coordinates must be
known precisely. Determining the correspondent points
in the filmed image can be done manually or by
automatic 3D matching techniques.

If it is possible to obtain information of the real scene,
world-coordinate reference system is set. Any reference
point (x,y,z) is taken relative to this coordinate system.
The corresponding points in the image (u,v) are taken
relative to the centre of the image and are in pixel units.

In our case, all the measurements are done manually. If
we assume a camera that only rotates in the X-Z plane,
only 3 points are needed to determine the position of the
real camera. In the case we take points that are parallel to
the image plane X-Y, only 2 points are needed. If we
have images from more than one camera, matching
between the reference points and its corresponding in
every image is done.

2.3. Creating a 3D synthetic scene

2.3.1. Open Inventor

Open Inventor [7] is a library of objects and methods
written in C++ that is based on Open GL, used to create
3D graphic applications.

The node is the basic unit for constructing a 3-D scene.
Inventor objects include data base primitives such as
shape nodes that represent geometric 3-D objects;
properties nodes that represent qualitative characteristic
of the scene; group nodes that are containers that group
other nodes and as a consequence, create a hierarchical
scene.

Nodes of a scene are structure in a graph. During
rendering process, the scene graph is visited starting with
the root node, in a left-right, and top-down way. The right
(and down) nodes of the graph inherit the state set by the
left (and top) nodes.

2.3.2. Synthetic objects creation

We create a synthetic scene by using the set of Open
Inventor primitives of shape (i.e. SoCube, SoCone,
SoCylinder, SoSphere, etc.). A specific material can be
applied to the objects by the effects of a  SoMaterial
node.

SoRotationXYZ  and SoTranslation nodes are used to
rotate and to translate an object respectively. For every
synthetic object that we want to create, we build a
SoSeparator node that groups SoMaterial and
SoTransformation node together with the node that
defines the shape. The subgraph is the following:

Object i
(SoSeparator)

(SoTranslation) (SoRotationXYZ) (SoMaterial) 3D-
Shape

All the 3-D object defined are grouping under a
SoSeparator node, for the synthetic objects set be isolated
from the rest of the Inventor scene. The subgraph is the
following:

 Object Set
(SoSeparator)

 Object 1        ...       Object m
 (SoSeparator)        (SoSeparator)

2.4. Creating the 3D screen

A 3-D “image screen object” is created with Open
Inventor primitives. Three kinds of Open Inventor nodes
are used: SoFacetSet, SoTexture and SoBlinker.

SoFacetSet

This class provides the shape to construct a flat surface.

SoTexture2

A node of this type contains a texture to be applied to an
object. For every image of the video sequence a
SoTexture2 node is built. The textures are mapped to the
screen object node to simulate the image “projection”
onto the screen.

SoBlinker

A node of this type has the property of switching between
all its children nodes at a specified speed. To simulate the
video projection over the screen, the SoTexture2 nodes
are grouped under a SoBlinker node that switches
between the images.

The speed attribute represents the number of complete
cycles per second ( a cycle means visiting all the children
nodes). The user specify a required projection speed or
frame rate (i.e. 25 frames/sec) and the speed is
determined as frame rate / n, with the length n of the
image sequence. The limit of maxim speed depends on
the hardware capacities.
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The nodes are grouped under a SoSeparator node in the
correct order for the textures and position changes be
applied to the last node. The subgraph is the following:

Screen Object
 (SoSeparator)

           (SoTranslation)                          Screen
Image Sequence                (SoRotationXYZ)
(SoFacetSet)
     (SoBlinker)

   Image 1    ...      Image n
(SoTexture2) (SoTexture2)

This graph represents a subgraph in the complete scene
graph. The SoSeparator node isolates the effects of its
children, that is the nodes inside this group don’t affect
upper or right in the complete scene graph.

In the next section we show how to determine the
position, orientation and size of the screen object for a
correct integration between the synthetic scene and the
mapped images.

The overall goal is to integrate the synthetic 3-D objects
set created and the real object reproduced in the image
sequence. Both the subgraphs defined for the 3-D
synthetic objects and the image screen object
respectively, are grouping under a SoSeparator node
forming the integrated scene graph as follow:

Integrated Scene
(SoSeparator)

Objects Set                Screen Object
                                  (SoSeparator)

2.5. Creating a virtual camera

2.5.1. Virtual camera definition

In the pinhole camera model the images are obtained
from a perspective projection as figure 2 shows. This
model is characterised by an optic center C and the view
plane P where the images are projected. Zc is the camera
optic axe, and is perpendicular to plane P, situated at a
distance f called focal distance. A point p(xc,yc,zc)
referenced in the camera coordinate system is projected
over the plane P in the point i(u,v).

The following lineal equations define the transformation
from p(x,y,z) to i(u,v):

v / yc   =   f / zc (1)

u / xc   =   f / zc (2)                 

Yc                                        p(xc,yc,zc)

                               i(u,v)             Zc

                C                                     P

                                Xc

FIGURE 2.     Camera model

A virtual camera implemented in a graphic workstation,
makes a bidimensional projection of a 3-D synthetic
world. To define a virtual camera in Open Inventor, there
exists a SoPerspectiveCamera node that emulates a real
camera. This node produces a frame from all the objects
that are after it in the scene graph. The complete scene
graph is as follows:

Root
(SoSeparator)

Camera                   Integrated Scene
            (SoPerspectiveCamera)

2.5.2. Integration between the 3D scene and the
images

The overall goal of the described process is to visualise a
correct integration of the 3-D synthetic objects and the
image sequences captured with the cameras from the real
scene. A correct visual integration means a visualisation
of the global scene that gives the illusion of having both
the real objects of the images and the 3-D synthetic
objects in the same 3-D scene.

To render the virtual scene we have to determine the
virtual camera's position and orientation. If we want to
obtain a final image where the real and synthetic objects
being coherently integrated, we have to emulate the
position and orientation of the real camera. Besides this
we have to determine the correct orientation and size of
the screen object.

The screen object where the video sequence is mapped
must always be centred in the optic axe and it must be
parallel to the view plane of the virtual camera. Besides
this the scene must be between the virtual camera and the
screen object to avoid hiding the synthetic objects, means
that all the synthetic objects occlude real objects.

In figure 3, we can see how the virtual camera does the
projections of very point p of the 3-D synthetic objects
and every point ps of the image that is mapped onto the
screen object. For a correct integration, the point p and its
corresponding ps in the mapped imaged must be
projected to the same point pi. For that the size of the
screen object must be adjusted depending on its distance
ds to the camera.

For every distance ds and size (ws,hs) of the screen object
there exist a correct position and orientation of the
camera and the screen object.

       Yc                                                                                                 Zc 

              Ps

                                                                                  P

                 Pi                                               Screen object

                       3D objects

             VC

                                                   Xc

FIGURE 3. Screen object and the virtual camera
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The key to accurate registration is, in turn, accurate
camera calibration. As we have said, with sufficient
matches between real-world coordinates (x,y,z) and the
corresponding point in image coordinates (u,v), it is
possible to derive camera position and orientation. Tsai´s
camera model [6] has 11 parameters, including 5 internal
parameters: effective focal length, first-order radial
distortion coefficient, centre coordinates of the radial
distortion, scale factor and 6 external parameters: camera
pan, tilt and roll with respect to world coordinates, and
x,y,z position in world coordinates. The model also
includes several constants such as the total number of
pixels in the u and v directions.

We know the dimensions wi and hi of the captured image
in pixel units. Applying eq. (1) and (2) to the extreme
point (ws/2,hs/2) of the screen object we have

hi / hs   =   f / ds (3)

wi / ws    =   f / ds   (4)

where f is obtained.

Applying eq. (1) and (2) to every reference point pr we
have,

vr / yrc   =   f / zrc (5)

ur / xrc   =   f / zrc (6)

We obtain (ur,, vr) measuring the image.

The point (xrc,yrc,zrc) is in the camera coordinate system,
but is expressed it in terms of the know world-
coordinates in the real scene coordinate system, and in
terms of the unknown translation and rotation that suffers
the camera. Resolving the set of equations the position
and orientation of the camera is obtained.

If we assume a camera that only rotates in the X-Z plane,
only 3 points are needed to determine its position and
orientation. Particularly, with only two reference points
pr1 and pr2 that are known parallel to the image plane X-
Y, we can measure its difference ∆x c and calculate the
factor k as:

k   = (ur2 - ur1 ) / ∆x c (7)

With this factor we reduce the unknown variables
because can obtain the (xrc,yrc,zrc) coordinates as:

xrc   = ur  / k (8)

yrc   = vr  / k (9)

zrc   =  f  /  k (10)

3. EVALUATION OF THE SYSTEM

3.1. Virtual camera equivalent to the real
camera

The position of the virtual camera relative to the 3-D
scene corresponds to the real camera position relative to
the real scene. Theoretically, if we have a synthetic scene
equal to the real one, and the virtual camera positioned
analogously to the real one the final image is equivalent

to the image obtained with the real camera from the real
scene.

Figure 4 shows an image obtained with a real camera
from a scene formed of three real objects. Figure 5 shows
the screen object where the image is mapped and a
synthetic scene that includes a cube corresponding to the
real one and other synthetic objects that don't have a
corresponding in the image. Figure 6 shows how the
integrated scene is visualised with a virtual camera
corresponding to the real one. We can have the illusion of
having both the real objects of the image and the 3-D
synthetic objects in the same 3-D scene.

FIGURE 4. Image obtained with a real camera

FIGURE 5. Synthetic scene with the screen object with the
real image mapped onto

FIGURE 6. Coherent integration

 

 In practice, there can be errors from he assumptions of an
ideal camera model, such as:
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- It is assumed a camera with an optical centre that
intersects the view plane at its centre, but in practice
there always exist a translation.

- It is assumed an ideal lens following pinhole model,
but in practice, the lens is not ideal and not all the
points are projected according to the same optical
centre C, and that is call geometric distortion.

Other errors can be caused by erroneous measuring of the
reference points and the matching with its corresponding
in the images.

In the method described in this paper, it is not a goal to
make an exact camera calibration. In contrast we evaluate
the quality of the visual results obtained with the simplest
process.

3.2. Different views of the 3D scene

Fixing camera keeps the coherence between the real
images and the synthetic objects but seams to be limiting.
The basic problem regarding 3D movement of the camera
derives from the fact that the filmed image is a simple 2D
surface. Consequently, if the virtual camera moves in 3D
space it can not obtain proper images. Taking an extreme
example, if the virtual camera direction is parallel to the
surface, it will be seen as a line.

Different effective solutions are proposed in the
following subsections.

3.2.1. Several real cameras

We can take different views of a real scene with several
cameras in different key position and orientation. For
every camera a screen object is constructed to map the
corresponding images onto.

Integrated Scene
(SoSeparator)

        Objects Set     Screen Object 1 ... Screen Object n

Because we have images from more than one camera,
matching between the reference points and its
corresponding in every image is done to determine the
correct position and orientation of every camera.

We define only one virtual camera but it can change its
position and orientation according the real cameras to
visualize the scene from different angles. If we capture
the real scene with different cameras it is possible
navigating the scene coherently.

In figure 7 we can see the 3D scene formed by a synthetic
object and two screen objects with the mapped images
taken with two different cameras. Figure 8 a) and b) show
the two different coherent views of the integrated 3D
scene.

FIGURE 7. Synthetic scene with two screen objects

a)
a)

b)

FIGURE 8. Two coherent views of the integrated scene

3.2.2. Movements of the virtual camera

In a simple integration, we want the positions of the
virtual camera and the real one coincide. In this case the
camera remains at the original centre of projection, and
the screen object is parallel to the view plane. A
movement of the virtual camera will cause a registration
error between the real image and the synthetic objects. If
we want move the virtual camera we can perform
geometrical transformation to the screen object to obtain
the desired effect but not a mathematically correct.

One of the advantages of having a virtual camera that
differs from the original real camera is that we can obtain
an effects just as if we had applied camerawork
completely different when the object was actually filmed.
For example, we can move to a position far beyond the
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physical limitation of studio space. If we have a filmed
sequence, once integrated in a virtual studio we can have
a closer or a farther view of it.

a) Zoom-in

b) Zoom-out

c) Tilt

d) Pan

FIGURE 9. Movements of the virtual camera

We can simulate a zoom-in (figure 9-a) by placing the
virtual camera closer from the screen object and by

augmenting its size to create a correct integration
between the zoom-in image and the synthetic scene.
Analogously a zoom-out (figure 9-b) is simulated by
placing the virtual camera farther from the screen object
and by correctly reducing its size.

The system is effective for depth direction, because
almost no sense of unnaturalness is associated with
movement in this direction. Rolling or rotating the
camera in the optic axe can be simulated without changes
in the screen object. Moving the camera position in up-
down or right-left directions and tilt (figure 9-c) or pan
(figure 9-d) movements produce no sense of
unnaturalness in the final image if the range of movement
is not too great.

3.2.3. Synthesizing novel views

There are methods for synthesising novel views of a 3D
scene from two reference images in full correspondence.
In [8], an algebraic entity termed trilinear tensor links
point correspondence between three images. For any
given virtual camera position and orientation, a new
trilinear tensor can be computed based on the original
tensor of the reference images and the desired view can
be created using it and the point correspondences across
two of the reference images. This method is robust
enough to generate synthetic images that are far away
from the original view cone.

This is an interesting way to make possible the complete
navigation of the integrated 3D scene with no need to
film it with different cameras.

3.3. Animation

A captured sequence of images (figure 10 a-h) can be
integrated with a synthetic scene. Figure 11-a shows a
synthetic scene with several objects, and figure 11-b
shows how the image sequence of figure 10 is integrated
with the scene to simulate the capture of an object.

It is possible to change both the camera and screen
position to simulate an interaction between the sequence
of image and a certain synthetic object. For example, a
sequence of images with a finger that points an object
may be projected in different places according to the
synthetic object to be pointed (Figure 12 a-d)

In spite of the real camera be fix real objects may be
animated. If the real camera change its position or
orientation it cause a registration error between the real
image and the synthetic objects, so this has to be
corrected by similarly displacing the virtual camera.

Virtual studios can perform many animations and special
effects; for example an object can move and change their
size or morph from one to another. Then it is possible to
animate the synthetic objects while the sequence of the
real images is projected.
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a) b)

c) d)

e) f)

g) h)

FIGURE 10. Captured sequence of images

a) Synthetic scene

b) Sequence of images integrated with the synthetic scene

FIGURE 11. Integration of a sequence of images with a
synthetic 3D scene

a) The finger points the synthetic parallelepiped

b) The finger points the synthetic sphere

c) The finger points the synthetic cube

d) Different view of the scene of the finger that points the
synthetic parallelepiped

FIGURE 12. Interaction between the real images and the
synthetic objects

If the animation is done independently from the sequence
of images or in an asynchronic way, the subgraph of the
object includes a SoBlinker for switching between all its
the variable children nodes that produce the animation.
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The following graph is from an object that changes its
position.

Object i
(SoSeparator)

(SoBlinker)  (SoRotationXYZ) (SoMaterial) 3D-Shape

Position 1   ...    Position m
(SoTranslation) (SoTranslation)

If we want a synchronised animation with the sequence
of images, the variable part of the animated object and
the sequence of images must be under the same SoBlinker
node. Every time this node switches, the changes in the
object and in the image sequence are produced.  In this
way, we can programme that an object reacts in some
way to something that happens in the sequence of
images.

4. CONCLUSSION

We present a simple system to produce 3-D synthetic
scenes integrated with real images captured with one or
more cameras. Particularly we use the graphic library
Open Inventor, but in the same manner we can use
VRML, Java 3D or other 3-D standard tools.

This system doesn’t want to be a professional tool for
video production. We present a simple process to produce
3D synthetic scenes that integrates images, with no need
of complex camera calibration and no additional specific
hardware more than a computer and one or more
cameras. Quality of the result depends of the degree of
visual coherence of the integration of 3-D synthetic
objects and the images captured with the camera, and that
is depending to the precision with which the manual
measures are done.

Initially we consider simple scenes that include geometric
objects that correspond to 3D primitives in Open
Inventor. It is demonstrated that a coherent visual
integration between the images of the real scene and an
exactly reproduced synthetic scene may be obtained. In
future applications, the type of integrated objects could
be extended.

Different solutions are proposed for navigating the 3D
integrated scene with visual coherence. More work may
be done in this area with the methods for synthesising
novel views from the captured images.

Besides the camera position and orientation, other
conditions may be emulated such as lighting,
environmental conditions (fog, shadows, etc.),
reflections, etc. Real shadows on virtual objects might be
emulated creating a synthetic object correspondent to the
real one that might be invisible but used to calculate its
shadows onto the other synthetic objects.

Some kind of interactions between real and synthetic
objects may be modeled by using a physical model of the
synthetic object that deforms under real forces.
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